iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier

نویسندگان

  • Wang-Ren Qiu
  • Xuan Xiao
  • Zhao-Chun Xu
  • Kuo-Chen Chou
چکیده

Protein phosphorylation is a posttranslational modification (PTM or PTLM), where a phosphoryl group is added to the residue(s) of a protein molecule. The most commonly phosphorylated amino acids occur at serine (S), threonine (T), and tyrosine (Y). Protein phosphorylation plays a significant role in a wide range of cellular processes; meanwhile its dysregulation is also involved with many diseases. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of S, T, or Y, which ones can be phosphorylated, and which ones cannot? To address this problem, we have developed a predictor called iPhos-PseEn by fusing four different pseudo component approaches (amino acids' disorder scores, nearest neighbor scores, occurrence frequencies, and position weights) into an ensemble classifier via a voting system. Rigorous cross-validations indicated that the proposed predictor remarkably outperformed its existing counterparts. For the convenience of most experimental scientists, a user-friendly web-server for iPhos-PseEn has been established at http://www.jci-bioinfo.cn/iPhos-PseEn, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ensemble method approach to investigate kinase-specific phosphorylation sites

Protein phosphorylation is one of the most significant and well-studied post-translational modifications, and it plays an important role in various cellular processes. It has made a considerable impact in understanding the protein functions which are involved in revealing signal transductions and various diseases. The identification of kinase-specific phosphorylation sites has an important role...

متن کامل

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

ProClusEnsem: Predicting membrane protein types by fusing different modes of pseudo amino acid composition

Knowing the type of an uncharacterized membrane protein often provides a useful clue in both basic research and drug discovery. With the explosion of protein sequences generated in the post genomic era, determination of membrane protein types by experimental methods is expensive and time consuming. It therefore becomes important to develop an automated method to find the possible types of membr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016